M2
 (C3)

 M2C3 - Prize Spinner

 M2C3 - Prize Spinner Task

 Task}

Student Work

The following provides Grade 3 solutions for the Prize Spinner Task. Students created their spinners and were asked to write a "detailed paragraph that explains the fractions in [their] spinner and the math that went into it." They were also asked what "equivalencies" they noticed. The narratives given for each sample task help provide a portrait of student understanding of equivalent fractions and fractions that sum to one whole.

Grade 3 - Prize Spinner
1 Today we made a spinner. The fracti that the worked with wane $4 / 12$, ils $1 / 3$. They rath because if you double $1 / 3$ it will make $2 / 6$ then you double. $2 / 6$ it will make $9 / 12$. Wk mated games to $1 / 6$ becouse we do p oncry fridays we matched up teacher read a book to us to be we to it every ELA class. We matched up computers with to $1 / 3$ because wo do it everyday. .le matched up $1 / 12$ and make smoothies becouse we dens do it aloft We match up luncheon to $1 /(2$ because yon ware hard. We notched up $1 / 12$ with two bob cat pow becoure you need to follow the rules. We matched up $1 / 1 z$ with early recess because wo need to finish and twin in ow horeuck pol reading work on tire This what we fonven math.

The two grade 3 students who created this spinner demonstrate an understanding of equivalent fractions and fractions that sum to 1 whole. Instead of using the term equivalent to describe the relationship of $\frac{4}{12}, \frac{2}{6}$, and $\frac{1}{3}$ the students write "they match" and the term "double" is used to indicate multiplying $\frac{1}{3} \times \frac{2}{2}$ to get $\frac{2}{6}$.

Grade 3
I Just finshed making a spinner. The mathematics behind The spinner is that the fractions equal to $\frac{1}{7}$ Each of them have a specif numbers because it was the one equalient to each other. Like early recess and luncheon gave them both $\frac{1}{3}$. farm chores are smaller because they are more specail. The smoothies and excirse are rare, so that's why I gave them $\frac{1}{12}$. This is how I made my spinner.

These grade 3 students show an understanding that the fractions used to make the spinner sum to $1\left(\frac{1}{1}\right)$ and that some of the fractions are equivalent to each other. The fractions are said to be equivalent because we "gave them both $1 / 3$." They do not identify the equivalence between $1 / 6$ and $2 / 12$. They also describe the space taken up by $1 / 6$ as "smaller" demonstrating an emerging connections between relative fraction size and the size of the denominator.

These grade 3 students
clearly identify equivalences in their spinner. " $1 / 3=4 / 12$, $1 / 4=3 / 12, . .$. " They also describe the relative size of the spinner segments. There appears to be an error in the number sentence outline in red. Using the fractions listed in the explanation the number sentence would be
$\frac{1}{12}+\frac{1}{6}+\frac{1}{6}+\frac{1}{4}+\frac{1}{3}=\frac{12}{12}$ There also appears to be a mistake in the spinner labels.

