M2C3 Project

Making Jump Ropes Task

 Student WorkThis file includes five solutions paths for grades 3,4 and 5 . Students used whole number addition and multiplication to determine the number of plastic grocery store bags needed to make jump ropes.

Factors that Students Considered

- The length of the jump rope depends on the height of the jumper.
- How many bags are needed to make the desired length rope?
- How many ropes will we make?

Connections to Students' Experiences

- Students have used jump ropes in P.E., at recess and at home. They understand that the rope length needed depends on height of the jumpers.
- Students may have seen or participated in two or more people jumping the same rope and understand that the length of the rope may need to accommodate more than one jumper.

Comments during warm-up

LENGTH OF JUMP ROPES: Students draw on experiences jumping rope to

 determine rope lengths needed (experiences at PE, at recess, at home)$5^{\text {th }}$ grader: To know if it is big or not you stand right in the middle of it and stretch the rope to see if it comes up to your armpits.
$3^{\text {rd }}$ grader: If the rope is too short, it will slap against your legs.
$3^{\text {rd }}$ grader: Jump rope needs to be twice the height, to fit along both sides of the body.
$5^{\text {th }}$ grader: Students like to jump double dutch, so we need four 14 foot ropes, 2 sets for double dutch.

This is an example of a student who has a reasonable plan but demonstrates a misunderstanding of how to multiply using repeated addition when carrying out that plan. The student's plan is to create 8 foot ropes for 25 students. Multiplying 25×8 they get 89 feet. If they need 3 bags for each foot and multiple 89×3 they need 108 bags.

To multiply the student used repeated addition. They add eight-8s to 25 . The same algorithm is used to multiply 89×3, adding three-3's to 89.

3 rd Grade

Students measured their shoulder height and doubled that amount (4'8") finding a total of 9 feet 6 inches. They decided to use 8 feet.

Using the ratio " 3 bag a foot" they found 8 feet $\times 3$ bags per foot $=24$ bags. It is not clear why they changed 24 to 26 bags. Note that the students are using the decimal point to separate feet and inches. This is common misunderstanding of the use of the decimal point to represent any remainder.

_ Assume

- 27 chills are in a pe. class
- some kids are the same height
- How many people are in a borton P.E. Class=use biggest - All bags are the same size class Size 20

Notice/Wonder and Know/Need to Know/Assume tools to lay out the information he will need to develop a solution.
This grade 4 student used the

a

